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This paper deals with a method which is meant to directly approximate the steady state
response of linear di!erential equations with periodic coe$cients under external excitations.
The interest lies in the use of particular systems with time-independent characteristics (mass,
damping) and with periodically time-varying sti!ness. A description of the principle of the
method is provided. This method has been successfully tested on a single-degree-of-freedom
(s.d.o.f ) example and compared to the standard Runge}Kutta method. Moreover, the
parameters are assumed to be a modi"cation of initial non-parametric systems and allow us
the use of the forced reanalysis methods to improve the direct spectral method (DSM). The
description of the reanalysis method is made with its implementation within the direct
spectral method. Then, a practical application concerning a clamped/free beam with
parametric mounts is presented to demonstrate the ability of the proposed method in the
analysis of systems which have many d.o.f.s and localized parameters.
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1. INTRODUCTION

The parametric vibrations and the many problems they create have been studied by both
engineers and mathematicians. This kind of behaviour occurs in structural systems
subjected to turbulent #ow, cracked rotors or elastic linkage systems (such as slider}crank
mechanism). These are described in references [1}6]. After the study of the stability of such
mechanisms, the steady state is often sought and it is not worth studying the transient
response. When traditional integration techniques (Runge}Kutta, Newmark) [4, 5] are
employed, the transient response is computed until a steady state is obtained. Indeed,
a large number of cycles of integration are needed to get a steady state response and thus are
computationally expensive. Nevertheless, these conventional methods are well known for
their robustness and could be used to compute the reference solution.

Another commonly used procedure to "nd the forced response consists of using the
methods based on Fourier series expansion [6]. Indeed, there is no need to choose an
integration time step and these methods directly approximate the steady state forced
response. Besides, they are not perfectly adapted to the treatment of systems having large
number of d.o.f.s.

The last method computes the steady state in the frequency domain by transforming
the set of di!erential equations into a set of algebraic equations using the Fourier
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transformation. Thus, the spectra of the forced response is given by solving a classical
constant linear system using either an iterative (iterative spectral method) [2, 3] or a direct
method (the direct spectral method).

This paper deals with the latter method to directly calculate the steady state response of
linear di!erential equations with periodic coe$cients. The interest in it lies in the use of
particular systems with time-independent characteristics (mass, damping) and with
periodically time-varying sti!ness. After the description of the principle of the method, some
numerical results concerning a s.d.o.f. system are displayed in order to validate this method.
Moreover, the parameters are assumed to be a perturbation of initial non-parametric
systems and allows one the use of the forced reanalysis methods [7}9] to improve the direct
spectral method. After the description of the reanalysis method implementation within the
direct spectral method, a practical application is taken into consideration in order to show
the ability of the proposed method to deal with large multi-d.o.f. systems with localized
parameters.

2. A DIRECT ANALYSIS: THE DIRECT SPECTRAL METHOD (THE DSM)

2.1. THEORY

These parametric systems with n degrees of freedom (d.o.f ) can be described by a second
order di!erential equation with time-varying coe$cients, which is

[M] )x( (t)#[C] )x( (t)#[K (t)] )x (t)"f (t) (n]1), (1)

where matrices are denoted by brackets and a superscript dot represents di!erentiation with
respect to the time t.

The n d.o.f. square matrices [M], [C] and [K (t)], respectively, represent the mass,
damping and time-varying sti!ness matrices. The n d.o.f. vector x(t) and f (t), respectively,
represent the generalized displacements and generalized forces.

When calculating the frequency response, the forcing function is given by

f (t)"F ) e~*ut (n]1), (2)

where F is a n d.o.f.-vector of constants, u the forcing frequency, t the time and the complex
value i2"!1.

The time-dependent sti!ness can be divided into two parts:

f time-independent or initial sti!ness [K
0
] (n]n);

f time-varying sti!ness g (t). [k] (n]n)

where the scalar g (t) is the periodic modulation and the n d.o.f. square matrix [k] the
amplitude of the parameters.

Therefore, the equation of motion (1) can be rewritten as

[M] )x( (t)#[C] ) xR (t)#[K
0
] ) x (t)#g (t) ) [k] ) x (t)"f (t) (n]1). (3)

The goal of these studies, is to "nd the steady response. In this case, the Fourier
transformation of equation (3) can be obtained by retaining only the stationary terms and
this yields the following continuous equation:

(!u2[M]#iu ) [C]#[K
0
]) )X(u)#

1

2n P
`=

~=

g (t) ) [k] ) x (t) dt"F(u) (n d.o.f.]1),

(4)
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where X(u) and F(u) are the Fourier transforms of the n d.o.f. vector of generalized
displacements and loadings respectively. Thanks to the convolution theorem (i.e., the
Fourier transformation of the product of two time functions is the convolution of their
Fourier transformation) the integral which appears in equation (4) can be expressed as

1

2n P
`=

~=

g (t) ) [k] ) x (t) dt"[k] ) (G?X) (u) (n]1), (5)

where ? shows the convolution.
Introducing equation (5) into equation (4) leads to

(!u2[M]#iu ) [C]#[K
0
]) )X(u)#[k] ) (G?X)(u)"F (u) (n]1). (6)

Three parts are emphasized in equation (6): (1) the initial n d.o.f. square complex
impedance matrix (!u2 ) [M]#iu ) [C]#[K

0
]); (2) the e!ects of parameters contained in

the convolution; (3) the loadings F(u).
Continuous equation (6) is discretized into N#1 discrete frequencies (from 0 to Nu

s
) to

computerize. Furthermore, the convolution product can be rewritten into a matrix product,

[k] (G? X)(u)"[K] )X
2

(2(N#1) ) n)]1 (7)

with

X
2
"K

R (X(0))

I (X(0))

F

R(X (Nu
s
))

I (X(Nu
s
))

(2(N#1) ) n)]1

the (2(N#1) n]1) vector where a distinction is made between imaginary and real parts.
Equation (7) is explained in Appendix A. Convolution becomes, in this case,

a frequencies}frequencies coupling and leads to

R(0) 2 0

F } F

0 2 R(Nu
s
)

)X
2
#[DK]X

2
"F

2
(2(N#1) n)]1 (8)

with

R (n )u
s
)"C

!(n )u
s
)2 ) [M]#[K

0
] !(n )u

s
) ) [C]

(n )u
s
) ) [C] !(n )u

s
)2 ) [M]#[K

0
]D

a (2n) square matrix or in a simpli"ed way

([R]#[DK])X
2
"F

2
(2(N#1) n)]1 (9)

where [R] is the real initial impedance matrix and [DK] the perturbation coming from the
parameters.

Thus, the forced response spectra is given by solving the linear system

X
2
"([R]#[DK])~1 )F

2
(2(N#1) n)]1. (10)
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But there is a limit to this method: the loading. Indeed, problems with non-periodic
excitations cannot be treated by this method. The latter can only be applied to harmonic or
periodic excitations such as the Fourier series decomposed.

2.2. NUMERICAL IMPLEMENTATION

In order to proceed to a good numerical implementation, it is necessary to use the
following procedure: (1) initialization; (2) Fourier transformations of the loadings f (t) and
the parameters' modulation g (t); (3) calculation and assembly of the real initial impedance
[R]; (4) convolution matrix construction [DK]; (5) the parametric forced response obtained
by inverting the modi"ed impedance matrix.

2.3. APPLICATION AND RESULTS

In order to validate the DSM, several periodic damped systems have been studied and
numerical results have been systematically compared with those obtained by using
a classical time integration schemes (Runge}Kutta second and third or fourth and "fth
order). In this part, two examples with a damped/spring/mass system illustrate
a comparative study between the proposed method and RK to test the e$ciency of the
DSM. The characteristics of these cases are displayed in Table 1 and Figure 1.

The results of these two tests (spectra and time responses) are presented in Figures 2}5.
For Figures 3 and 5, the continuous and the dotted lines represent the displacement

obtained by the DSM and the Runge}Kutta method respectively.
Typical time histories and spectra of the steady state forced response in the case of

di!erent frequencies show the in#uence of the parameters on the nature of the responses.
Figure 1. s.d.o.f. parametric system.

TABLE 1

Properties of the parametric system

Case 1 Case 2

m 10 kg 10 kg
c 0)5 N s/m 2Ns/m
k(t) 10#2cos (u

P
t ) 10#2cos (u

P
t )

f (t) cos (u
E
t) cos (u

E
t)

u
E

0)4 rad/s 0)1 rad/s
u

P
0)3 rad/s 2 rad/s



Figure 2. Spectrum of case 1.

Figure 3. Displacement of case 1.
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A comparison between the results of the DSM and those of the Runge}Kutta illustrates the
accuracy of the developed method. The maximal relative errors obtained in the chosen
examples of the DSM method and the classical method of Runge}Kutta are less than 1% in
the "rst case and around 1% in the second one. This explains why the curbs corresponding
to the two methods are superposed on the graphs of Figures 2}5. Moreover, the calculation
time has been reduced by 10 times with the DSM.

3. MECHANICAL SYSTEMS LOCALLY PARAMETRIC: DSM AND FORCED REANALYSIS

It is rare to "nd 100% of the parametric systems. The parameters are often concentrated
in a few d.o.f. Furthermore, in DSM, the forced response spectrum is obtained by inverting
the modi"ed impedance matrix. Thus, the forced reanalysis could be used to improve the



Figure 4. Spectrum of case 2.

Figure 5. Displacement of case 2.
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DSM without loss of accuracy and with time savings [7}9]. A peculiar method has been
programmed: the Palazzolo method [9].

After the description of the reanalysis method implementation within the DSM,
a practical application is taken into consideration in order to show the ability of the
proposed method to deal with a large quantity of d.o.f. systems with localized parameters.

3.1. THEORY AND IMPLEMENTATION

The parametric problem with modi"ed degrees of freedom (m.d.o.f.) in equation (9) could
also be partitioned as follows:

X
2
"K

X1
2

X2
2

, F
2
"K

F1
2

F2
2

, R"C
R11 R12

R21 R22D , R~1"C
S11 S12

S21 S22D , [DK]"C
0 0

0 DK22D ,

(11)
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where X1
2

and F1
2

are the spectra of non-modi"ed d.o.f., X2
2

and F2
2

those of m.d.o.f.s,
respectively, and the inverse impedance matrix R~1 obtained by Gaussian elimination or by
its spectral formulation.

By this condensation, equation (10) is written as

C
R11 R12

R21 R22D K
X1

2
X2

2

#C
0 0

0 DK22D K
X1

2
X2

2

"K
F1
2

F2
2

(2(N#1) n)]1. (12)

The impedance matrix could be factorized and inverted. This yields

K
X1

2
X2

2

#C
S11 S12

S21 S22DC
0 0

0 DK22D K
X1

2
X2

2

"C
S11 S12

S21 S22D K
F1
2

F2
2

"K
X1

02
X2

02

(2(N#1) n)]1, (13)

where the right-hand side (RHS) part is the initial non-parametric forced response spectra
(X1

02
and X2

02
).

Equation (13) could also be rewritten into two subsets:

X1
2
#S12DK )X2

2
"X1

02
, (2(N#1)(n!m)) * 1,

(I#S22DK) )X2
2
"X2

02
, (2(N#1)m) * 1.

(14)

Thus, the new parametric forced response is obtained by

X2
2
"(I#S22DK)~1 )X2

02
,

X1
2
"!S12DK )X2

2
#X1

02
.

(15)

From this condensed formulation, only a reduced part of the initial impedance is
required. This results in a noticeable computation time savings. It also leads to a reduction
of memory size needed in its numerical implementation. This last property cannot be
neglected since the size of the parametric problems we have to cope with in the study of
mechanical systems, increases more and more.

Moreover, this method is more e$cient if the forced response spectra are needed for
a range of loadings at di!erent frequencies. The main limit comes from the number of d.o.f.s
a!ected by the parameters. If this number is too high, the reanalysis computation can be an
inadequate substitute for the DSM. Therefore, a comparative study in terms of operation
costs was carried out and, for a given con"guration showed a limit in terms of numbers of
d.o.f. a!ected by parameters, a limit beyond which a reanalysis is of no use.

In order to proceed to a good numerical implementation of the forced reanalysis
applied to the resolution of parametric systems, the procedure described in Figure 6 is
recommended.

3.2. INITIAL DATA

In order to evaluate the in#uence of the implementation of reanalysis methods in DSM, it
is interesting to study a clamped beam with parametric springs. A comparison on CPU time
is made between these two methods. Figure 7 presents the modelled structure built with
eight "nite elements, having 16 d.o.f.s and four parametric springs. The mechanical
characteristics can be seen in Table 2.

Two kinds of tests have been carried out:



Figure 6. Forced reanalysis applied to the resolution of parametric systems.

Figure 7. Free/clamped beam with parametric mounts.

TABLE 2

Mechanical characteristics of the parametric clamped beam

Second moment of inertia of the beam cross-section (m4) 5]10~9
Young's modulus of steel (N/m2) 2)1]1011

Mass density (kg/m3) 7)8]103
Number of degree of freedom n d.o.f. 16

(1 translation and 1 rotation per node)
External force f (N ) 1 sin (u

E
t )

On node 8 vertically
u

E
(rad/s) 20

C (N s/m) or (Ns/rad) 1
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Case 1: The structure displayed with one parametric spring (k
4
). This one has 6)25% of

its d.o.f.s modi"ed by the parameters.
Case 2: The structure displayed with two parametric springs (k

3
and k

4
). This one has

12)5% of its d.o.f.s modi"ed by the parameters.



TABLE 3

Parameters characteristics

Case k
1

(N/m) k
2

(N/m) k
3

(N/m) k
4

(N/m)

1 100 100 100 100(1#0)5 sin (5t))
2 100 100 100(1#0)3 sin (7t)) 100(1#0)5 sin (5t))

TABLE 4

CP; times for each stages of the calculation of the response

Case 1 Case 2

DSM rea DSM DSM rea DSM
Calculation stages (s) (s) Runge}Kutta (s) (s) Runge}Kutta

1 Assembly 0)11 0)11 1)44 1)44
2 Convolution 0)99 0)99 5)88 5)88
3 Condensation 0)01 0)05
4 Invert R 0)09 0)43
5 Non-parametric 0)01 0)05

response
6 Parametric response 0)01 0)26

by Palazzolo
7 Parametric response 0)11 2000 0)62 2500

Total 1)22 1)21 2000 8)11 7)94 2500
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The characteristics of the parameters are described in Table 3.

3.3. RESULTS

The CPU times for the di!erent methods used are presented in Table 4. The computer
used has a pentium 166 MHz processor and 16 Mbytes of ram.

As can be seen, the DSM reanalyzed (DSM rea) or not (DSM), is more e$cient than the
traditional method. In these particular cases, the forced reanalysis seems to be of no interest.
But its e$ciency increases when the forced response is needed for a range of frequencies.
Thus, it is useless to compute all processes (only 5 6). Only the computation of the non-
parametric and parametric response by Palazzolo are necessary. The graphics of Figures 8
and 9 show the CPU time evolution for an increasing number of frequencies. This proves
the e$ciency of reanalysis methods in the treatment of parametric systems

4. CONCLUSIONS

The direct spectral method represents a powerful technique for the analysis of parametric
systems.

The major advantage of this method is the ability to quickly calculate the parametric
system forced response in the "eld of frequency. In addition, the use of forced reanalysis
improves this new method and makes the treatment of large parametric systems possible.



Figure 8. CPU time for a range of frequencies and for case 1.

Figure 9. CPU time for a range of frequencies and for case 2.
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Thanks to localized parameters, all matrices are sparse and they also reduce the data
storage.

The substantial progress shown in this study is the implementation of a method which, by
combining the reanalysis techniques, enables considerable time savings together with a very
good quality in terms of accuracy of the results obtained. This method reveals its strength
during the conception process when many successive analyses are necessary in order to "nd
the optimal structure.

The method displayed here represents, as a consequence, a very attractive substitute for
the methods traditionally used in computational codes.
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APPENDIX A: CONVOLUTION

The Fourier transformation of the product of two time functions is the convolution of the
Fourier transformations of the time functions (A1). This kind of convolution is called
circular convolution due to its properties of symmetry and periodicity:

[k] ) g (t) ) x (t) F063*%3 53!/4&03.&&&&&&" [k]
1

2n P
`=

~=

e~*uu g (t) ) x (t) dt"[k] ) (G?X)(u). (A1)

The integral which appears in equation (A1) can be expressed in a discrete form (A2) and is
truncated by the lower (!N) and the upper (#N) boundaries.

[k] ) (G ?X)(n )u
s
)"

`N
+

m/~N

[k] )G((n!m) )u
s
) )X(m )u

s
) (n]1) (A2)

with

X (m )u
s
)"K

X
1
(m )u

s
)

F

X
n $.0.&.

(m )u
s
)

(n]1).

Additionally, if X (!m )u
s
)"XM (m )u

s
), then equation (A2) could be rewritten as

[k] ) (G ?X)(n )u
s
)"

`N
+

m/0

a ) [k] ) (G ((n!m) )u
s
) )X(m )u

s
)#G((n#m) )u

s
) )XM (m )u

s
))

(A3)

with a"1 for m'0 and a"0)5 for m"0.
This complex formulation could be rewritten into a real formulation considering that

K
R(XM )
I(XM )

"C
1 0

0 !1D K
R(X)

I (X)
(2n]1), (A4)

where I is a square (2n) identity matrix.
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Substituting equation (A4) into equation (A3), one obtains

[k] ) (G?X)(n )u
s
)

"

`N
+

m/0

aA
R(G((n!m) )u

s
) ) [k]) !I (G ((n!m) )u

s
) ) [k])

I(G ((n!m) )u
s
) ) [k]) R (G((n!m) )u

s
) ) [k]) B K

R (X(m )u
s
))

I (X(m )u
s
))

#aA
R (G((n#m) )u

s
) ) [k]) !I (G ((n#m) )u

s
) ) [k])

I (G ((n#m) )u
s
) ) [k]) R (G ((n#m) )u

s
) ) [k]) BA

I 0

0 !IB K
R (X(m )u

s
))

I (X(m )u
s
))

"

`N
+

m/0

aA
R((G((n!m) )u

s
)#G((n#m) )u

s
)) ) [k])

I((G((n!m) )u
s
)#G ((n#m) )u

s
)) ) [k])

I ((!G((n!m) )u
s
)#G((n#m) )u

s
)) ) [k])

R ((G((n!m) )u
s
)!G ((n#m) )u

s
)) ) [k]) B K

R(X(m )u
s
))

I (X(m )u
s
)).

(A5)

Thus, one obtains a generalized formulation

[k] ) (G ?X) (u)"[DK] )X
2

((2(N#1) n)]1), (A6)

where

X
2
"K

R (X(0))

I (X (0))

F

R (X(N))

I (X(N))

.

APPENDIX B: NOMENCLATURE

n number of degrees of freedom
RK Runge}Kutta method
DSM direct spectral method
DSM rea direct spectral method reanalyzed

¹ime domain
t time

¹ime invariant characteristics
[M] mass matrix
[K

0
] initial sti!ness matrix

[C] damping matrix

Parametric characteristics
[k] parametric sti!ness's amplitude
g(t) parametric sti!ness's modulation
x(t) generalized displacement
xR (t) generalized velocity
x( (t) generalized acceleration
f (t) generalized forces
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Frequency domain
R real part
I imaginary part
i complex value i2"!1
u forcing frequency
u

s
sampling frequency

FT Fourier transformation
N no. of discretized frequencies
? circular convolution
G(u) amplitude of parameters
R(u) real initial impedance matrix at u
F(u) complex or F

2
(u) real amplitude force

X(u) complex or X
2
(u) real amplitude displacement

( ) complex conjugate

Forced reanalysis
D( ) changes
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